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The red algal metabolites trans-kumausyne (1a) and
deacetylkumausyne (1b),1 by virtue of their unusual all-cis
3-oxygenated-2,5-dialkyltetrahydrofuran core and rich func-
tionality, have been the object of considerable synthetic
effort.2 Overman’s group accomplished the landmark total
synthesis of (()-1a in 18 steps from 2-cyclopentylidenecy-
clopentanone using a novel Prins cyclization-pinacol rear-
rangement for elaborating the tetrahydrofuran (THF) core.3
During the course of our work,4 Sugimura reported an
enantioselective synthesis of 1a from L-arabinose (19 steps,
1.1% overall yield) in which the THF ring is formed by
cyclization of a â-silyl cation.5 More recently, Martı́n
disclosed a 22-step synthesis of (-)-1b from propargyl alcohol
that employs brominative cyclization as the key step.6
Prompted by these reports, we describe here a considerably
shorter and simpler synthesis of (-)-trans-kumausyne by a
potentially general pathway that we expect to extend in due
course to the preparation of brown algal metabolites (e.g.,
2a-c) that possess a 2S,3S,5R 3-oxygenated-2,5-dialkyltet-
rahydrofuran core.7

Retrosynthetic analysis dictated by considerations of
atom-economy and stereochemical flexibility suggested that
both 1a and 2a, as well as their congeners, should be
available by a unified strategy based upon tandem intramo-
lecular alkoxycarbonylation-lactonization8 for assemblage

of the THF unit (cf. 4 f 3, Scheme 1). Either diastereoiso-
mer of diol 4 (2R,4R or 2R,4S) should be accessible at will
from the same ketone (5) by stereoselective reduction under
the appropriate conditions.9
Our approach began with the selective reduction10 of

dimethyl (R)-malate (6) to the known diol 711,12 (Scheme 2).
Treatment of 7 with 1 equiv of tert-butyldiphenylsilyl
chloride and imidazole in DMF at 0 °C accomplished
selective protection of the primary alcohol group to furnish
813 in 91% yield. Ester 8 was transformed into â-hydroxy
enone 10 by recourse to Weinreb’s method.14 Thus, reaction
of 8 with N,O-dimethylhydroxylamine hydrochloride in the
presence of trimethylaluminum provided the crystalline
N-methoxy-N-methylamide 9 (89%), which on exposure to
vinylmagnesium bromide gave enone 10 in an unoptimized
yield of 53%. This enone was subjected to reduction under
the Evans protocol9 (Me4NHB(OAc)3 in MeCN/AcOH) to
afford the desired anti-diol 11 in 89% yield after silica gel
chromatography. None of the syn-isomer of 11 could be
detected in the 1H NMR spectrum of the crude reduction
product.15
With a supply of diol 11 in hand, the stage was now set

for the crucial alkoxycarbonylation-lactonization. Treat-
ment of 11 with carbon monoxide in the presence of PdCl2
(0.1 equiv), CuCl2 (3 equiv), and AcONa (4 equiv) in AcOH8

afforded uniquely the bicyclic lactone16 12 in a yield of 93%.
Crafting of the lactone ring into the requisite enyne and
hydroxyl appendages was accomplished by DIBAL-H reduc-
tion and subsequent Wittig-olefination with the commer-
cially available [3-(trimethylsilyl)-2-propynyl]triphenylphos-
honium bromide.17 In this manner, pure trans-enyne 13
was obtained in 85% yield after separation from its cis-
isomer (8%) by flash chromatography. Next, 13 was con-
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verted to the acetate 14 in quantitative yield. Removal of
both silyl protecting groups of 14 was best achieved (95%
yield) by using benzyltrimethylammonium fluoride hydrate18
in acetonitrile. Swern oxidation of the resulting alcohol 15
afforded aldehyde 16 with high efficiency. Elaboration of
the trans-1-bromo-3-hexenyl side chain was carried out in
a fashion similar to that described by Overman.3 Thus,
Sakurai reaction of aldehyde 16 with 3-(trimethylsilyl)-1-
pentene3 provided alcohol 17 as the sole isomer in 52% yield.
Treatment of this alcohol with CBr4 and tri-n-octylphosphine
in toluene19 at 80 °C afforded (-)-trans-kumausyne (1a,
50%), whose optical rotation [[R]26D -2.9° (c 0.11, CHCl3)
[lit.1 [R]26D -2.3° (c 0.62, CHCl3)]] and spectral properties
(1H and 13C NMR, and IR) were consistent with those
reported in the literature.1,3
In summary, we have achieved an exceptionally concise

and efficient synthesis of (-)-trans-kumausyne20 from di-
methyl (R)-malate (13 steps, 6.2% overall yield), which

demonstrates the serviceability of the general plan outlined
in Scheme 1 for stereocontrolled construction of 3-oxygenated
2,5-dialkyltetrahydrofurans. In addition, this work serves
to highlight the intrinsic power of tandem intramolecular
alkoxycarbonylation-lactonization for building complexity
rapidly, in atom-economical fashion. Further applications
of this strategy to the synthesis of structurally related
natural products are in progress and will be reported in due
course.
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Scheme 2a

a Key: (a) BH3‚Me2S, NaBH4, THF, rt (87%); (b) TBDPSCl (1 equiv), imidazole, DMF, 0 °C (91%); (c) (MeO)MeNH‚HCl, AlMe3, CH2Cl2, 40 °C
(89%); (d) CH2dCHMgBr, THF, 20 f 50 °C (53%); (e) Me4NHB(OAc)3, MeCN-AcOH, -40 °C (89%); (f) CO, PdCl2 (0.1 equiv), CuCl2 (3 equiv),
AcONa (4 equiv), AcOH, rt (93%); (g) DIBAL-H (1.5 equiv), THF, -78 °C (100%); (h) TMSCtCCH2P+Ph3Br- (2 equiv), t-BuOK, Et2O, rt (85%); (i)
Ac2O, DMAP, pyridine, rt (100%); (j) PhCH2NMe3F‚xH2O, MeCN, 0 f 25 °C (95%); (k) Swern oxidation (96%); (l) (CH2dCH)CH(TMS)Et, BF3‚Et2O,
CH2Cl2, -78 f +25 °C (52%); (m) CBr4, n-Oct3P, toluene, 80 °C (50%).
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